Total No. of Questions : 8]		30	SEAT No.:	
PA-11	181		[Total	No. of Pages : 3
[5925] 203				
S.E. (Civil)				
FLUID MECHANICS				
(2019 Pattern) (Semester-III) (201003)				
	/2 Hours]		[.	Max. Marks: 70
	ons to the candidates:	or 0 6 0 7 a	, O 9	
1) 2)	Answer Q.1 or Q.2, Q.3 or Q.4, Q.5 Answer to the all questions should be			ok
3)	Neat diagrams must be drawn wherev		igie unswer-bo	on.
<i>4</i>)	Figures to the right indicate full man	•		
5)				
(non programmable) and steam tables is allowed.				
6)	Assume suitable data, if necessary.		. No	
	Ø	0,0	•	
O(1)	A 1.15 model of a flying heat	O .	ach water Th	a prototypa is
Q1) a)	A 1:15 model of a flying boat is towed though water. The prototy moving in seawater of density 1025kg/m³ at velocity of 21 m/s. Find			
	corresponding speed of the mod		•	
	waves on model if the resistance	(1 1/		
	(A) (S)		1	[9]
b)	Explain the phenomenon of Bou	undarv Laver	Separation a	nd Methods to
- /	control to it.	J	. · · · · ·	[8]
	OI	D		
				6
Q2) a)				~ v
	considered as dependent upon the length of the aircaft <i>l</i> , velocity V,			
	viscosity μ , air density ρ , and bulk modulus of air K. Express the functional relationship between these variables and the resisting force			
Use Buckingham's Π Method				[9]
				[8]
D)	b) Explain with the help of neat sketchi) Laminar boundary layerii) Turbulent boundary layer			
	i) Laminar boundary layer		20	
	ii) Turbulent boundary layer		7,3	
	iii) Laminar Sub-laver)	

P.T.O.

- Q3) a) A pipe of 110 mm diameter is carrying water. If the velocities at the pipe center and 30 mm from the pipe centre are 2.1 m/s and 1.6 m/s respectively and flow in the pipe is turbulent. Calculate the shear friction velocity and wall shearing stress.
 - b) Derive with usual notations the following Darcy-Weisbach equation for the loss of energy due to friction. [8]

$$h_f = \frac{4 f.LV^2}{2.g.D}$$

OR

- Q4) a) A fluid of viscosity 8 poise and specific gravity 1.2 is flowing through a circular pipe of diameter 100 mm. The maximum shear stress at the pipe wall is 211 N/m². Find: [9]
 - i) The pressure gradient,
 - ii) The average velocity, and
 - iii) Reynolds number of the flow
 - b) Explain the procedure of Hardy Cross method for the analysis of pipe network. [8]
- **Q5**) a) The discharge of water through a rectangular channel of width 8 m, is 15.5 m³/s when the depth of flow of water is 1.25 m. Calculate: [10]
 - i) Discharge per unit width
 - ii) Velocity of flow
 - iii) Specific energy of the flowing water
 - iv) Critical depth
 - v) Critical velocity and
 - vi) Value of minimum specific energy.
 - b) Derive with usual notations the basic governing "energy equation" of channel flow. [8]

OR

Q6) a) A trapezoidal channel has side slope of 3 horizontal to 4 vertical and slope of its bed is 1 in 2000. Determine the optimum dimensions for the channel sections and show it with neat sketch, if it is carry water at 0.55 m³/s. Take Chezy's constant as 80.

ii) Find the rate of flow of water through a V-shaped channel as shown in Figure 6 b. Take the value of C=56 and slope of the bed 1 in 2000.

[4]

Fig: 6 b

(Not to scale)

- Q7) a) A metallic ball of diameter 2×10^{-3} m drops in a fluid of sp. gr. 0.96 and viscosity 15 poise. The density of the metallic ball is 12000 kg/m³. Find:
 - i) The drag force exerted by fluid or metallic ball,
 - ii) The pressure drag and skin friction drag, and
 - iii) The terminal velocity of ball in fluid.
 - b) Explain Classification of channel bottom slopes with neat sketches. [8] OR
- Q8) a) A rectangular channel is 20 m wide and carries a discharge of 65 m³/s It is laid at a slope of 0.0001. At a certain section along the channel length, the depth of flow is 2m. How far U/S or D/S will the depth be 2.6m? Take n=0.02. Use direct step method with three steps. Consider the depth increment in the interval of 0.1m. Classify and sketch the profile. [10]
 - b) A flat plate 1.5 m×1.5 m moves at 51 m/hr in stationary air of density 1.16 kg/m³. If the co-efficient of drag and lift are 0.16 and 0.76 respectively, determine: [8]
 - i) The lift force,
 - ii) The drag force
 - iii) The resultant force, and
 - iv) The power required to keep the plate in motion.